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Abstract

Recent advancements in generative models have significantly transformed the land-

scape of artificial intelligence, particularly in image synthesis and representation learning.

The rapid advancement of computing power has brought image processing to the forefront

by being applied to various fields, there is a growing demand for artificial faces driven

by privacy concerns. This project investigates how to generate novel artificial faces from

established face datasets by applying three different generative model architectures: Vari-

ational Autoencoder (VAE), Generative Adversarial Network (GAN), and a hybrid model

that integrates both frameworks. The performance and effectiveness of these models are

thoroughly compared to evaluate their capabilities in face generation. Some interpreta-

tions and further facial interpolations are also discussed.
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1 Introduction

Rapidly developing computing power brings image processing to center stage. In real-life

applications such as character face generation in realistic games and psychological research on

emotion recognition and interpersonal communication, increasing demand for artificial new

faces is seen due to privacy concerns. This leads us to our goal: to simulate entirely new and

realistic faces by training models using existing images.

In the field of image processing, autoencoders are the most basic machine learning mod-

els. However, the limitation of only being able to reconstruct faces without imposing any

structure on the latent space makes it challenging to generate new samples by simply sam-

pling from the latent space. To achieve our goal of generating new and realistic faces, we

mainly focus on variational autoencoder(Rezende and Mohamed, 2015) and generative ad-

versarial networks (Goodfellow et al., 2014) based models in this project. We are aware of

other generative models, such as diffusion models (Sohl-Dickstein et al., 2015), normalizing

flows(Rezende and Mohamed, 2015), and energy-based models (LeCun et al., 2006). But

the sampling costs of diffusion models, normalizing flows and energy-based models are much

higher (Murphy, 2023). Meanwhile, diffusion models often demonstrate superior generation

quality than Energy-Based Models and Normalizing Flows (Cao et al., 2024). So we will focus

on VAEs and GANs in this project. But due to the time constraint and computational cost,

we may not be able to cover these models in this project. Nevertheless, VAE and GAN based

models already give us a lot of room to explore. And we consider extending our project to

these models, especially diffusion models, in the future.

The rest of the report is organized as follows. In Section 2, we will introduce our dataset

and the notation used throughout this project. We review VAE, GAN, and a combined model

of VAE and GAN in Section 3. In Section 4, the generating results and model evaluation

will be presented. In Section 5, we shall discuss the latent arithmetic. And we conclude our

project in Section 6.

Through these methods, we hope to effectively simulate entirely new and realistic faces,

providing more possibilities and solutions for related applications.

2 Dataset and Notation

2.1 Dataset and Pre-processing

To train our generative models, we downloaded the raw data from Large-scale CelebFaces

Attributes (CelebA) Dataset. Celeba Dataset is a facial dataset developed by researchers

from The Chinese University of Hong Kong to help train and test computer vision tasks such

as facial analysis, facial attribute recognition, facial detection, face synthesis and face editing.

The dataset has large diversities, large quantities, and rich annotations, consisting of

202,599 images and 10,177 identity labels, each with 40 binary annotations such as mustache,

hair color, and the shape of face.

We downloaded the Align&Cropped Images version, in which the raw images were first

roughly aligned using a similarity transformation according to the two eye locations, and then

resized to 218 ∗ 178. In consideration of computational cost, we further center-cropped and
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resized the images to 64 ∗ 64.

2.2 Preliminary Visualization

The images below were pre-processed and would be proceeded as training dataset.

Figure 2.1 Figure 2.2 Figure 2.3

2.3 Notations

We introduce several general notations used throughout this project. Let N denote the

sample size of the dataset, x = (x1, · · · , xN ) denote the input data, z = (z1, · · · , zN ) denote

the latent variables, where xi ∈ Rd, zi ∈ Rm, 0 < m < d. In our case, d = 64 ∗ 64. And the

loss function is denoted as L.

3 Methodology

3.1 VAE

Figure 3.1: Illustration for VAE (Source).

In brief, VAE includes two main parts. First is mapping the dataset to a latent space by

the encoder, and then do the opposite, which is mapping the latent space back to the input

space. We have the following model assumptions:

prior: z ∼ pθ(z), (3.1)

likelihood: x|z ∼ pθ(x|z), (3.2)

posterior: z|x ∼ pθ(z|x), (3.3)

approximated posterior: z|x ∼ qϕ(z|x), (3.4)

where the parameters of pθ(x|z) are computed by the neural network decoder dθ(z), and the

parameters of qϕ(z|x) are computed by the neural network encoder eϕ(z). The approximated

posterior is used since the true posterior distribution is sometimes intractable.
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To make sure qϕ(z|x) are as close as possible to pθ(x|z), we need the KL divergence:

DKL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

= Eqϕ(z|x)

{
log

qϕ(z|x)
pθ(z|x)

}
= Eqϕ(z|x)

{
log

qϕ(z|x)pθ(x)
pθ(x, z)

}
= log pθ(x) + Eqϕ(z|x)

{
log

qϕ(z|x)
pθ(x, z)

}
,

(3.5)

the evidence lower bound(ELBO):

Lθ,ϕ : = Eqϕ(z|x)

{
log

pθ(x, z)

qϕ(z|x)

}
= log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)),

(3.6)

and the goal of VAE is to maximize the ELBO and minimize DKL(qϕ(z|x)||pθ(x|z)).
According to Murphy (2023), by defining the empirical distribution pD(x) =

1
N

∑N
n=1 δ(xn−

x), the aggregated posterior qD,ϕ(z) =
∫
x qD,ϕ(x, z)dx ,and the inference likelihood qD,ϕ(x|z) =

qD,ϕ(x, z)/qD,ϕ(z), the ELBO can be rewritten as

L(θ,ϕ|D) = −DKL(qD,ϕ(x, z)||pθ(x, z))︸ ︷︷ ︸
KL divergence

+ EpD(x)[log pD(x)]︸ ︷︷ ︸
Reconstruct the input data

(3.7)

c
= −DKL(qD,ϕ(z)||pθ(z))− EqD,ϕ(z)[DKL(qϕ(x|z)||pθ(x|z))], (3.8)

where
c
= denotes to mean equal up to additive constants.

According to 3.7, the loss function of VAE includes two parts: the reconstruction loss

and the KL divergence, which measures the difference between input and output, and the

difference between the assumed distribution and learned distribution. In other words, the

loss function is a sum of the mean square error and KL divergence.

We apply gradient ascent to find θ∗, ϕ∗ = argmaxθ,ϕ = Lθ,ϕ, which is equivalent to find

∇θEz∼qϕ(·|x)

{
log

pθ(x, z)

qϕ(z|x)

}
, (3.9)

∇ϕEz∼qϕ(·|x)

{
log

pθ(x, z)

qϕ(z|x)

}
. (3.10)

Stochastic back propagation can be applied to conduct reparameterization, see Rezende et al.

(2014)

3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) share similarities with VAEs, both of which are

examples of probabilistic latent variable models. According to Goodfellow et al. (2014),

the objective of a GAN is to train a generator, denoted as G that effectively captures the

underlying data distribution, enabling it to generate samples that closely resemble the original
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input data. To achieve this, the original and generated data are fed into a discriminator, D,

which estimates the probability that a given sample originates from the training dataset

rather than from the generator.

Figure 3.2: Illustration for GAN (Source).

We assume that x ∼ pdata and z ∼ pg. The mapping function G represents the procedure

of mapping from Rm to Rd. The discriminator’s veracity D(x) represents the accuracy of

the discriminator’s judgment. And the generating process is as follows according to Murphy

(2023):

x = G(z
′
),

z
′ ∼ pg(z),

pg =
∂

∂x1
· · · ∂

∂xd

∫
{G(z)}

pg(z)dz.

The training process for D is to minimize the probability of D making a mistake. By

definition, it can be written as:

max
D

D(x), (3.11)

min
D

D(G(z)), (3.12)

which are equivalent to max
D

{D(x) + [1−D(G(z))]}.
Similarly, the training process forG is to maximize the probability ofD making a mistake.

By definition, it can be written as:

max
G

(D(G(z))) = min
G

(1−D(G(z))), (3.13)
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Applying to all data, we have discriminator loss and generator loss

LD = − 1

N

N∑
i=1

{D(x) + [1−D(G(z))]} , (3.14)

LG = − 1

N

N∑
i=1

{1−D(G(z))} . (3.15)

Thus, our goal can be achieved by

LGAN = min
G

[max
D

{
Ex∼pdata [logD(x)] + Ex∼pg [log(1−D(x))]

}
]. (3.16)

In an ideal scenario, the optimal solution is achieved when Discriminator loss equals

Generator loss. However, this balance is not commonly attained due to the inherent adver-

sarial nature of GAN. To assess the performance of the model, it is essential to visualize the

loss functions. If the loss plots appear to be overly stable, it may mean that Discriminator

and Generator have ceased to learn meaningful features. Conversely, if Discriminator loss

and Generator loss fluctuate within a certain range, it suggests that they are both robustly

competing against one another. Therefore, careful consideration of both the loss plots and

the quality of the generated images is crucial before concluding the training process. This

dual assessment ensures that the models are effectively learning and improving throughout

training.

3.3 VAE+GAN

Figure 3.3: The model structure of VAE+GAN (Larsen et al., 2016).

From (3.7), the loss function of VAE can be decomposed as the reconstruction error term

and the KL divergence term. The reconstruction term is based on the mean squared error,

which is indeed calculated pixel-wisely. But this pixel-wise loss may not conform to human

visual intuition. To address this issue, Larsen et al. (2016) proposed VAE+GAN, which

combines the VAE and GAN models, and instead of using this reconstruction error term, a

GAN discriminitor is used to identify whether the reconstructed images look like real ones.

Assume a Gaussian observation model D(x) | z ∼ N(D(x̃), I), where x̃ ∼ D(z) is the

sample from the decoder of x, I is the identity matrix. The reconstruction error term is

LDiscriminator
Similarity = −Eq(z|x) [log p (D(x) | z)] ,
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and the total loss function of VAE+GAN can be represented as

LTotal = LKL +LDiscriminator
Similarity +LGAN, (3.17)

where LKL is the same as the KL divergence term in (3.7), LGAN is the loss function of

GAN as in (3.16).

The training process of VAE+GAN is summarized in Algorithm 1 of Larsen et al. (2016).

We want to highlight that, the encoder is updated based on LKL and LDiscriminator
Similarity , the

decoder is updated based on LGAN and LDiscriminator
Similarity , the discriminator is updated based

on LGAN. Notice that, for updating decoder, LGAN and LDiscriminator
Similarity are used, but one

may dominate another in real data. So we introduce another hyperparameter γ in front

of LDiscriminator
Similarity . When we are updating the decoder, we are actually updating based on

γLDiscriminator
Similarity and LGAN, hence the ability of reconstruction and fooling the discriminator

can be balanced. But the additional computational cost of including γ is not ignorable.

4 Result

4.1 Generated Images and Loss Plots

4.1.1 VAE

The loss plot of the VAE model indicates that VAE achieved convergence at around the

20th epoch, indicating that the model has reached a stable state in its learning process. To

reduce the risk of overfitting and to ensure optimal output quality, training was terminated

at this point.

Figure 4.1: Loss plot of VAE.

The three plots of 25 faces below were generated by the VAE model after training for 1,

10, 20 epochs respectively. The VAE model converged fast. The outputs from epochs 10 and

20 demonstrate significant improvement than epoch 1, with clearer representations of facial

expressions, more defined hair outlines and reduced artifacts.

The face images generated by the VAE after 20 epochs show good diversity, with distinct

facial and character features. However, it is worth noting that these generated faces exhibit

noticeable blurriness. This may result from the fact that VAEs usually uses a small latent

dimension; in our case, the latent dimension was 128. The input information could not pass

through this bottleneck efficiently, meanwhile, the construction loss used by VAEs aims to

minimize the Euclidean distance by averaging all plausible outputs. Therefore, VAEs tend to

produce blurry results.
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Figure 4.2: VAE with 1 epoch. Figure 4.3: VAE with 10 epoch. Figure 4.4: VAE with 20 epochs.

4.1.2 GAN

In the context of Generative Adversarial Networks (GANs), the loss curves exhibits sig-

nificant fluctuations, mainly attributed to the inherent adversarial dynamics between the

generator and the discriminator. This dynamic interplay suggests that each component is

effectively adapting to the other’s performance, which is a hallmark of a well-functioning

adversarial training process.

Notably, after approximately 300 epochs, the discriminator lossLD and generator lossLG

reached a relative stabilization, resulting in more consistent fluctuations. This stabilization

indicates that the model has reached a relatively balanced state, where the generator and

discriminator effectively optimized their respective goals without extreme oscillations. This

behavior suggests that the generator was producing more realistic face images, while the

discriminator was still able to effectively distinguish between fake generated samples and real

faces. The training process converged to a point of equilibrium, allowing for the generation

of more reliable and realistic faces.

Figure 4.5: Generator Loss Plot of GAN. Figure 4.6: Discriminator Loss Plot of GAN.

We compared the images generated by the GAN model trained for 5, 300, and 500 epochs.

The results show that the image quality improved significantly from the 5th to the 300th

epoch, while the subsequent epochs, from the 300th to the 500th, demonstrated only marginal

improvements in quality. This observation suggests the GAN model achieved relative stability

after training for 300 epochs, a notably long training period compared to the VAE. Such

extended training duration underscores the time-intensive nature of GANs and their inherent

instability during earlier stages of training.

Furthermore, when evaluating the images generated by the GAN model at the 300th

and 500th epochs against those generated by the VAE, the output of the GAN exhibits

significantly superior properties. Specifically, the faces generated by the GAN model exhibit

well-defined boundaries and precise features closer to a real face’s representation.

9



This improvement in image quality can be attributed to the fact that VAEs primarily focus

on minimizing the mean squared error between the generated images and the real images.

Consequently, the ideal output tends to represent the average image across all plausible

variations. In contrast, GANs prioritize the plausibility of each output, emphasizing the

generation of realistic samples rather than requiring an exact local match to the training

data.

Figure 4.7: GAN with 5 epochs. Figure 4.8: GAN with 300 epochs. Figure 4.9: GAN with 500 epochs.

4.1.3 VAE+GAN

For the VAE+GAN model, the loss plot exhibits similar fluctuations to those observed

in the previous GAN model, which is attributed to the adversarial dynamics between the

generator and the discriminator. We ran 200 epochs under the conditions of γ = 1.5/15,

respectively. From the generated images, we found that the VAE+GAN model reached a

relatively stable state at around the 150th epoch, γ = 15, which we defined as the optimal

state. The loss plots of the VAE+GAN model when γ = 15 are shown in Figure 4.10, 4.11,

4.12, and 4.13.

Figure 4.10: Generator Loss of VAE+GAN. Figure 4.11: Discriminitor Loss of VAE+GAN.

Figure 4.12: KL Loss of VAE+GAN. Figure 4.13: Reconstruction Loss of VAE+GAN.

We show a series of facial images generated by the VAE+GAN model with γ = 15 through-

out the generation process. It can be observed that the generated images after 100 epochs

tend to be sharper than the ones generated by the VAE, which can be attributed to the incor-

poration of the GAN component. Generally, the VAE+GAN model combines the advantages
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of rapid convergence and enhanced output clarity from both the VAE and GAN architectures.

Although the final images generated are apparent, there is one noteworthy phenomenon:

Eigenfaces. The facial features in the 25 images generated by the VAE+GAN model generated

by the VAE+GAN are quite similar, suggesting that the VAE+GAN may converge on a

limited set of facial features. This may be because the VAE imposes a regular structure on the

latent space through its encoding process. While this can help in generating coherent images,

it may also limit the diversity of the generated outputs. The latent space representation

learned by the VAE may not capture the full variability present in the data, especially if it is

overly regularized. The second reason could be the interactions among the loss functions of

the VAE and GAN. If the VAE’s reconstruction loss dominated, the generator may prioritize

reproducing average features and sacrifice diversity.

Figure 4.14: VAE + GAN with 5
epochs(γ =15).

Figure 4.15: VAE + GAN with
100 epochs(γ =15).

Figure 4.16: VAE + GAN with
150 epochs(γ =15).

4.2 Model Evaluations

Based on the images generated by the three models VAE, GAN, and VAE+GAN as well

as their corresponding loss plots, we conducted a comprehensive evaluation of these models.

This evaluation included quantitative methods to assess the quality of the generated images

alongside the performance of the models themselves.

4.2.1 Generated Images

We implemented the Inception score(Murphy, 2023) and Laplacian Variance(Canny, 1986)

to evaluate the generated images based on the uniqueness of facial features, the diversity and

visual credibility of generated faces, the preservation of facial features after changing features,

and image clarity. The mathematical formulations for the Inception Score (IS) and Laplacian

Variance are presented below:

IS = exp[Epθ(x)DKL(pdisc(Y |x)||pθ(Y ))] (4.1)

The Inception Score (IS) is a prominent metric for assessing the quality of images produced

by generative models. It utilizes a pre-trained Inception network to evaluate the generated

samples’ clarity and diversity. The score is derived from the distribution of predicted class

labels for these images, indicating how well they capture various categories (Murphy, 2023).

A higher Inception Score indicates that the images exhibit more distinct features and greater
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diversity, reflecting the model’s ability to generate high-quality, visually appealing outputs.

For clarity of the picture, Laplacian Variance is implemented, calculating the variance of

the output of a Laplace filter. Laplace variance is calculated as follows (Canny, 1986):

Laplacian Variance = Var(∇2I) (4.2)

Similar to IS, larger Laplace variance values indicate greater clarity and detail, making it

an effective indicator of the visual quality of generated output.

VAE GAN VAE+GAN Real

Inception Score 1.704 2.650 1.231 4.239

Laplacian Variance 251.79 2506.18 1360.62 1073.71

Table 4.1: Comparison of generated images.

Table 4.1 calculates the Inception Score and Laplacian Variance of the three models. The

GAN model performs better than the VAE and VAE+GAN models in both aspects, indicating

that the GAN performs better than the other two models in generating images. Generally,

the VAE+GAN model did not perform well based on these two measurements of generated

images. This result is consistent with our previous observations regarding eigenfaces issues

of the VAE+GAN.

Additionally, the images generated by the GAN and VAE+GAN have higher Laplace vari-

ance than the original images. This may be because GAN-generated images usually produce

richer details and textures, which can improve the Laplace variance since this metric examines

how the edges and textures in an image change. On the other hand, GAN/VAE+GAN may

overfit the training data in our training porcess, thus the generated images may show higher

contrast and more details, affecting the Laplace variance.

After all, data in Table 4.1 is only a reference for assessing the clarity and diversity of

the images. Both Laplace variance and IS have limitations since they are affected by many

factors when evaluating images, such as overfitting. Thus, we added the model evaluation to

supplement our assessment of the model.

4.2.2 Model Comparison

Table 4.2 analyzes the advantages and disadvantages of the three models:

Model Epochs to Optimal Advantages Disadvantages

VAE 20 epochs Fast Convergence Poor Image Quality

GAN 300 epochs High Image Quality Unstable & Time-Consuming

VAE + GAN 150 epochs Hybrid Benefits Eigenfaces

Table 4.2: Model Comparison.

In summary, each model exhibits unique advantages and limitations, with no single model

outperforming the others across all metrics. In practical applications, selecting an appropriate

model should be informed by specific requirements and objectives to ensure alignment with

the desired outcomes. In our practice, while careful combination of two existing models
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may yield beneficial results, it can also introduce new challenges, such as the complexity of

selecting optimal hyperparameters. Furthermore, the combination may not fully capitalize

on the strengths of each model, potentially resulting in compromises and sacrifices.

5 Discussion

Our research investigated latent space arithmetic within generative models, specifically

focusing on the VAE framework. Latent space arithmetic enables controlled manipulation

of generated samples through mathematical operations in the latent space, enhancing model

flexibility while providing insights into the interpolation of facial characteristics.

5.1 Interpretability of Latent Space

The interpretable nature of latent space arithmetic is a significant strength of our ap-

proach. The graph shown below is the visualization of the latent space of the trained optimal

VAE model.

Figure 5.1: Visualization of Latent Space of VAE.

As we can see from the scatter plot, the data points exhibit relatively uniform spread,

suggesting that the model has learned to represent the data distribution regularly. Within

this uniform distribution, many distinct clusters are observable. This clustering reflects the

model’s ability to encode meaningful facial features such as smiling, sunglasses, hair styles

and so forth.

By performing vector operations in latent space, we can achieve precise control over these

facial features. Our experiments showcased this capability by manipulating specific facial

features. We computed the difference between the mean latent vectors of images with and

without certain attributes (such as smiling expressions), allowing for targeted modifications

while maintaining other characteristics. This approach not only validates the linear sepa-

rability hypothesis of latent space but also demonstrates the potential for controlled image

generation.

Furthermore, integrating latent space arithmetic with Conditional Variational Autoen-

coders (CVAE) can enhance controllability. By combining conditional variables with latent

vector operations, we can generate images under specific conditions while precisely adjusting

particular attributes, thereby enabling more complex generative tasks.
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Figure 5.2: Interpolation: unsmiling to smiling (Source).

5.2 Limitations of Arithmetic Operations

Our investigation revealed several constraints in latent space arithmetic applications. Lin-

ear interpolation techniques sometimes struggled to represent complex feature transitions,

particularly when fine control was required. The effectiveness of arithmetic operations showed

strong dependence on latent space parameters, including dimensionality and structure. De-

termining optimal latent space dimensions for specific applications remains challenging and

requires further investigation.

5.3 Future Research Directions

Several promising research paths emerge from our findings. Investigating latent space

arithmetic in newer architectures, such as diffusion models, could yield valuable insights.

Integration with advanced neural network components might offer novel approaches to latent

space manipulation. These developments could expand the practical applications of generative

models while improving their performance characteristics.

6 Conclusion

The objective of this project is to generate new data samples, namely artificial faces,

from an existing facial dataset through the utilization of two generative model architectures:

Variational Autoencoder (VAE) and Generative Adversarial Network (GAN). We also exper-

imented with a hybrid approach that integrates both architectures to explore its potential to

enhance the generation outcomes.

We start from a VAE model to learn a structured and continuous distribution of data

and generate new faces from it. This model converged quickly but produced outputs with

low sharpness. Next, we employed a GAN model to make the generator compete with the

discriminator, resulting in new samples that were highly sharp, authentic, and diverse, al-

though the model converged slowly and was unstable. Finally, we implemented a VAE+GAN

model by substituting the GAN’s generator with the VAE, enabling it to compete against the

GAN’s discriminator. This approach led to a relatively rapidly converging model that can

generate new faces with high sharpness but low diversity. What’s more, we also investigated

the latent space of the VAE model, allowing to exert control over the latent representations.

The results presented in the formal sections of this report indicate that the outcomes

from the GAN may be the best among the three models. Meanwhile, the VAE offers the

advantage of learning a continuous latent space representation, enabling the interpolation of

facial features. However, the limitations of the GAN stem from insufficient computing power
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and the structure of the code, which contribute to its instability and prolonged convergence.

With additional computing power and more efficient code, these limitations can be mitigated.

In real-life applications, the generated realistic faces can be used for virtual avatar generation

in realistic games, as subjects for psychological research on emotion recognition and interper-

sonal communication, etc. Additionally, the privacy of facial data providers and users can be

well protected.
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