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1 Introduction

The major difficulty in wildlife research is identifying animals’ unique characteristics –
such as spots, fringe and so on. Traditional methods mainly rely on manual observation,
which is not only time-consuming and labor-intensive, but also prone to some human
error. Recent development in image identification and pattern recognition has provided
some more systematic identification techniques. However, current image identification
models are sensitive to factors such as noise artifacts, illumination conditions, and view-
point variations, while frequently failing to generalize to novel environments. Moreover,
most models are designed for closed set recognition.

Our project aims to tackle these issues by constructing robust models for recognizing
individual sea turtles, salamanders, and lynxes. The primary objective is to develop
models’ capability of both identifying seen individuals and detecting unseen ones - the
open set recognition capability most deep learning approaches typically underperform.
We mainly implemented the fine-tuning of a powerful pretrained model (MegaDescriptor),
combined with some techniques like species-specific adaptive thresholds and appropriate
image enhancements.

This works are expected to save wildlife researchers tons of time and give more ac-
curate data comparing conservation efforts—whether it’s tracking endangered turtles or
monitoring lynx populations.

2 Literature Review

In recent years, numerous innovative and impactful methods have emerged to address
the challenges outlined above. One notable approach is OpenMax [3], which enhances
a model’s ability to recognize unknown categories by replacing the traditional SoftMax
layer with OpenMax. This modification effectively enables more reliable rejection of
unseen classes. Another advancement is the ALIKED network [17], which incorporates
a Sparse Deformable Descriptor Head (SDDH) and relaxes the neural reprojection error
(NRE) loss from dense to sparse, thereby improving the training of extracted sparse
descriptors. As a result, ALIKED demonstrates both efficiency and strong performance
across a range of visual measurement tasks, including image matching, 3D reconstruction,
and visual relocalization. These developments can be comprehensively evaluated using
state-of-the-art open world object detection systems.[10].

In addition to open-set solutions, image augmentation [4] offers a classical and reliable
technique for expanding the dataset, thereby enhancing the model’s recognition accuracy.
Another effective strategy for achieving higher accuracy with limited data is the adoption
of metric learning methods[12], which can significantly improve the performance of super-
vised learning approaches by optimizing the embedding function by using category labels
and enhancing the discriminative ability and generalization performance of the model.

3 Dataset Overview

3.1 Data Source

The AnimalCLEF25 dataset[7] from Kaggle was employed for our open-set re-identification
experiments. It consists of 1,102 distinct identities and over 13,000 images from three
species: loggerhead sea turtles, salamanders, and Eurasian lynxes. Notebly, none of those
images are included in the WildlifeReID-10k dataset[1]. From Figure A.1a in Appendix,
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we can observe that the images vary a lot in lighting conditions and environments. For
instance, there are also some grayscale or underwater pictures with low contrast and
resolution. Additionally, some salamander images were taken when holding in hands, re-
sulting in visible human hands and some occlusions. These factors introduce significant
noise, thereby increasing the difficulty for the model of learning robust visual features.

3.2 Data Statistical Characteristics

Following figures illustrate the distribution of the number of images per individual. It
is clear that there exists a severe data imbalance: most individuals have only a few images,
while some have up to hundreds of images. Such imbalance may limit the model’s fea-
ture extraction ability, not only potentially resulting in poor feature quality and reduced
discriminative ability, but also increasing the risk of overfitting and poor generalization
performance. Additionally, imbalance among species is also clear; most salamander indi-
viduals own few images, while some sea turtle individuals have numerous images. This
may bias the model’s confidence toward classes with greater representation.[8]

3.3 Data Pre-processing and Augmentation

The python library imgaug[11] was employed for image augmentation. We designed a
randomized augmentation sequence including various effects, such as rotation, Contrast
Limited Adaptive Histogram Equalization, Gaussian blur and so on.[15] Each effect was
applied randomly with designed random parameters. As shown in Figure A.1 , this
sequence significantly enhances the visual clarity of textures in many images.

As demonstrated in Figure A.2 in appendix, repeated application of the sequence to
the same image yields diverse outputs thanks to the stochasticity of the augmentation
process. To mitigate data imbalance, an oversampling strategy mentioned by Mohammed
et al.[13] was implemented for individuals with less than 5 images. Specifically, existing
images were augmented to generate new images until reaching a total of 5 images.

3.4 Dataset Splitting Strategy

Two splitting strategies were included, the open-set and closed-set strategy, both en-
sure no repeated images in two subsets. The open-set strategy ensures that the second
subset contains individuals unseen in the first subset, while the closed-set strategy guar-
antees that the first subset includes all individuals presented in the second subset, with
different images. In the project, we consistently allocated 90% of the data to the first
subset and 10% to the second subset. However, due to the special splitting strategy, the
percentage is not exactly guaranteed.

Initially, the open-set strategy was employed, resulting in the availableSet and
testSet. The latter was reserved exclusively for evaluating overall performance, contain-
ing individuals not appearing in the former. Subsequently, the availableSet was further
divided with open-set strategy into trainSet and thresholdSet. The thresholdSet

would be used for selecting appropriate thresholds facing open-set recognition tasks.
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Finally, the trainSet was partitioned using a closed-set approach into training and
validating, utilized for training and validation purposes respectively, allowing the mon-
itoring during the training progress.

4 Models

4.1 MegaDescriptor Fine-Tuning

The first approach we adopted is to fine-tune a pre-trained image feature model on
our dataset specific to 3 species. And this model will be used as a feature extractor.

MegaDescriptor-L-384[6] is a sophisticated Swin-L vision transformer, specifically de-
signed and pretrained on WildlifeReID-10k[1] for robust species-invariant feature extrac-
tion. At its core, the model employs a hierarchical design with shifted window-based
self-attention mechanisms, which efficiently processes visual information across multi-
ple scales. This unique attention mechanism, combined with patch merging operations,
enables the model to simultaneously capture fine-grained texture patterns and broader
contextual information such as body morphology and postural variations. The architec-
ture’s substantial capacity, comprising 228.8M parameters across 24 transformer blocks,
facilitates the learning of complex feature hierarchies through its four-stage progressive
structure (192→384→768→1536 channels). As mentioned above, the model’s pretrain-
ing datasets don’t overlap with current dataset, ensuring the learned features are truly
species-agnostic. This comprehensive pretraining strategy, coupled with the model’s in-
herent architectural advantages, makes it particularly suitable for fine-tuning tasks that
require robust individual identification under open-set challenge. Specifically, the model’s
architecture for fine tuning can be decomposed into following blocks, see Figure 4.1.

Figure 4.1: MegaDescriptor-L-384 Architecture

4.1.1 Fine-tuning Architecture

The fine-tuning approach employs a selective layer unfreezing strategy to optimize
the model for the target task while preserving pretrained knowledge. Initially, all layers
are frozen to maintain the robust species-invariant features learned during pretraining.
Then, specific components may be strategically chosen to unfreeze:

• (optional) The penultimate stage SwinTransformerStage(2) of the backbone, pro-
cessing lower-level feature representations, with 234 parameters

• The final stage SwinTransformerStage(3) of the backbone, which processes high-
level semantic features, with 29 parameters

• The final Norm layer for adaptive feature normalization, with 2 parameters
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• The newly initialized fully-connected layer in head, specially designed for corre-
sponding fine-tuning strategy

The strategy balances between leveraging pretrained knowledge and adapting to the
specific requirements of our target dataset, while being computationally efficient by only
updating a subset of the model’s 228.8M parameters.

4.1.2 Optimizer Configuration

We chose AdamW optimizer and employed a differential learning rate strategy. The
rationale for using AdamW is its proven effectiveness in transformer fine-tuning tasks,
combining adaptive learning rates with proper weight decay regularization. The differ-
entiated learning rates allow more aggressive updates for new layers while maintaining
stability in pre-trained components.

Below are two fine-tuning strategies. The first strategy fine-tunes the model
by adding a classification head and optimizing with cross-entropy loss, while
the second employs a metric learning setup using triplet loss to improve the
embedding space for similarity-based tasks.

4.1.3 Classification Fine-tuning

4.1.3.1 Fully-connected Layer
The newly initialized classification head, which is modified from the original archi-

tecture to output 912 classes (number of known individuals in training dataset). The
classification head here is a simplified version in consideration of reducing overfitting.
(More complex classification head has also been experimented but yielded inferior re-
sults. see Section 6.1.1).

4.1.3.2 Batch Size
In our experiments, we evaluated the impact of different batch sizes on model perfor-

mance by training with batch sizes of 16, 32, and 64, which are typical choices in this
field. As shown in Appendix Figure A.5, the training loss curves for all three batch sizes
exhibit similar trends, with no significant differences in convergence speed or final loss
values. Furthermore, the validation loss (evaluated on validating) in Figure A.6 also
remained consistent across the different batch sizes, indicating that the choice of batch
size within this range does not substantially affect the model’s ability to generalize.

4.1.3.3 Learning Rate

• The final stage of the backbone: 5e-5 • Classification head: 1e-5, 2e-5, 5e-5
• Normalization layer: 1e-5 • Weight decay: 0.05

We adopted a differential learning rate approach to apply different learning rates to
the pretrained components and newly added classification head in our model. Specifically,
the final stage layers and the normalization layers of the original MegaDescriptor model,
which were unfrozen during training, were assigned relatively small learning rates (5e-5
and 1e-5, respectively) to preserve the valuable pretrained features while allowing for
gradual adaptation to our dataset. Notably, normalization layers received an even lower
rate (1e-5) to stabilize their mean or variance estimates during training.

For the classification head, we scaled the learning rate linearly with batch size (1e-5
for 16, 2e-5 for 32, 5e-5 for 64), a common practice to maintain convergence stability
when batch sizes vary, following the standard linear scaling rule [9] that larger batch
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sizes can typically accommodate higher learning rates without destabilizing training. As
an additional experiment, we applied a OneCycle learning rate schedule, which gradually
increases the learning rate to a peak before annealing it towards the end of training as
shown in Figure A.7. This approach is widely used and considered reasonable, as it can
help the optimizer converge faster and potentially improve generalization.

A weight decay of 0.05 was also applied to regularize the model and prevent overfitting.

4.1.3.4 Loss Calculation
For our classification task, we employed the cross-entropy loss as the objective func-

tion. It measures the discrepancy between the model’s predicted class logits and the true
class labels. For a batch of N samples, it computes:

LCE = −
1

N

N∑
i=1

zi,yi − log

 C∑
j=1

ezi,j


where zi,j is the logit for sample i and class j, C is the number of classes, and yi is

the true label. This loss internally applies a softmax to the logits, followed by a negative
log-likelihood term, optimized for both stability and efficiency.

4.1.4 Embedding Fine-tuning

As the model is used for feature extracting and the final prediction relies on feature
vectors, we also consider fine-tuning an embedding space directly. This process is called
metric learning, and the goal is to ensure feature vectors of the same individuals are
pulled closer together while vectors of different individuals are pushed farther apart.

4.1.4.1 Loss Calculation and Training Sample Selection
Triplet loss with cosine similarity is employed during the metric learning process.

The margin is initially set to 0.2 and seemed to work well. However, three input samples:
anchor, positive negative are required to guide the embedding space optimization, intro-
ducing the challenge of generating informative triplets. For batching, the M-per-class
sampler would ensure multiple images of each identity are present within a batch, pro-
viding enough options for the miner. Additionally, the miner is configured for semi-hard
triplet selection, balancing between difficulty and stability, as experiments indicated that
hard triplets incur excessive fluctuations in the loss values.

4.1.4.2 Embedding Head Design and Dimensionality
A linear transformation was used as a fully connected layer to build a 1024-dimensional

embedding space. Notably, our experiments revealed that a 512-dimensional embedding
space yielded to much inferior performance. This may be attributable to the higher
dimensionality enabling the representation of richer and more comprehensive information.

4.1.4.3 Layer Unfreezing Strategy and Learning Rate
Comparing with the Classification strategy, an additional stage SwinTransformerStage(2)

was unfrozen, allowing the model to learn richer feature representations. Although proved
effective in improving performance, this stage contains 234 parameters, thus significantly
increasing GPU memory usage and forcing a decrease in batch size.

4.2 Apply Another Framework: EfficientNet

Apart from the MegaDescriptor Fine-Tuning strategies, we also adopted another
framework - the EfficientNet, which has been a popular model for its low parameter
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count requirement and high accuracy rate. Among all variants of this network, we chose
EfficientNet B4 as our training model because it reaches a sweet point among speed, ac-
curacy and GPU demand.[16] First, we tried to directly import our dataset with preimage
augmentation into the model and used it to recognize the three animals. Secondly, we
chose to freeze all layers and then unfreeze only the classifier head and replaced it with
the provided WildFusion classifier head in order to boost performance in the specific ani-
mal recognition mission. However, this model fell short of expectations in both attempts
comparing with the MegaDiscriptor , refer to Table 6.2 for detail.

5 Prediction

5.1 Similarity Calculation

The prediction pipeline processes the input database and query images through a
series of well-defined stages. In the first stage, the WildFusion[5] implements the priority
pipeline to extract features from the two datasets with the fine-tuned MegaDescriptor in
Section 4. These features then undergo L2 normalization, followed by a cosine similarity
calculation. For the top 20 pairs, ALIKED descriptors with LightGlue matching are
applied for new scores. Finally, similarity scores from all pipelines are calibrated through
isotonic regression with a calibration set to ensure comparability and effective fusion,
during which the raw similarity scores are mapped to a probabilistic scale.

5.2 Species-Specific Threshold Selection

Our threshold determination process utilize the thresholdSet splitted in Section 3.4
(instead of the validating and the testSet since the selection of threshold still be-
longs to hyperparameter tuning) as the query dataset and the training used in training
as the database dataset. Upon computing similarity scores with all individuals in the
training for each thresholdSet image, if the highest similarity score falls below the
species-specific threshold, the individual is predicted as ”new individual”; otherwise, it is
predicted as the identity corresponding to the highest similarity score. This binary deci-
sion mechanism requires careful threshold calibration to balance between two competing
objectives: accurately identifying known individuals (BAKS, to be introduced in Section
6.0) and correctly recognizing new ones (BAUS, to be introduced in Section 6.0).

However, fixed similarity thresholds often prove inadequate for different species due
to their varying characteristics. To address this, we introduce a species-specific thresh-
old calibration method that optimizes the trade-off between seen and unseen individual
identification accuracy. For each target species, we:

1. Evaluate thresholds across a range (0.05 to 0.95), computing BAKS and BAUS.

2. Select the optimal threshold by maximizing the geometric mean (GEO MEAN) of
BAKS and BAUS:

τ∗s = argmax
τ

√
BAKSs(τ)× BAUSs(τ), s ∈ {lynx, turtle, salamander}

6 Result and Evaluation

6.0 Metrics

In open-set recognition, traditional evaluation metrics fail to account for the bal-
ance between recognizing seens and rejecting unseens. We employed three specialized
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metrics[1]:
• Balanced Accuracy for Known Samples (BAKS): computes the mean per-class recall
for known individuals, excluding samples from novel test-set identities (Ctest-only):

BAKS =
1

|C|
∑
c∈C

|{x | ŷ(x) = y(x) = c, y(x) /∈ Ctest-only}|
|{x | y(x) = c}|

• Balanced Accuracy for Unknown Samples (BAUS): measures the mean per-class
true negative rate for novel identities, where correct predictions must be labeled as
‘new individual‘:

BAUS =
1

|Ctest-only|
∑

c∈Ctest-only

|{x | ŷ(x) = ‘new individual’, y(x) = c}|
|{x | y(x) = c}|

• The Geometric Mean (GEO MEAN): combines both metrics:

GEO MEAN =
√
BAKS× BAUS

6.1 MegaDescriptor Classification Fine-Tuning

6.1.1 Training Process

The training and validation loss curves for the different models are shown in Fig-
ure 6.1 and Figure 6.2. With the exception of the Model with complex classification
head (Batch64-ComplexHead), all models demonstrate converging training and valida-
tion losses, indicating stable training and no significant overfitting. The performance
across these models is generally comparable.

Notably, the model trained with the learning rate warmup strategy (Batch64-WarmupLR)
exhibits the fastest convergence and achieves the lowest final validation loss, suggesting
that the warmup schedule is effective in promoting both rapid and robust learning.

In contrast, the Model Batch64-ComplexHead, which corresponds to a model with a
more complex classification head, shows signs of overfitting: the training loss decreases
rapidly while the validation loss begins to increase after a few epochs. This behavior is
likely due to the increased capacity of the classification head, which allows the model to
fit the training data too closely at the expense of generalization. To mitigate this, early
stopping was applied during training.

Figure 6.1: Training loss of models Figure 6.2: Validation loss of models

6.1.2 Prediction Performance

After training, we removed the classification head and used the WildFusion with
ALIKED to compute pairwise similarity scores across the thresholdSet and training

datasets. For each species, we plot: (1) BAKS, (2) BAUS, and (3) GEO MEAN across
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decision thresholds. The species-specific optimal threshold is selected at the GEO MEAN
maximum. The visualization of the calibration of Model Batch64-WarmupLR (Figure 6.3)
demonstrates how tailored thresholds are selected.

Table 6.1 summarizes the maximum GEO MEAN values and their corresponding
BAKS and BAUS for each species across the evaluated models. Notably, Model Batch64-
WarmupLR generally achieves high GEO MEAN for all species, demonstrating slightly
better performance in balancing the identification of known individuals BAKS and rejec-
tion of the unknown BAUS. In contrast, Model Batch64-ComplexHead yields the lowest
GEO MEAN, indicating comparatively weaker trade-off optimization for all species.

Figure 6.3: Species-Specific Threshold Selection of Model Batch64-WarmupLR

Table 6.1: Performance comparison of different models across species and metrics

Model
Lynx Loggerhead Turtle Salamander

BAKS BAUS GEO MEAN BAKS BAUS GEO MEAN BAKS BAUS GEO MEAN

Batch16 0.318 0.922 0.542 0.442 0.901 0.631 0.603 0.931 0.750
Batch32 0.364 0.949 0.588 0.439 0.859 0.614 0.587 0.871 0.715
Batch64 0.303 0.976 0.544 0.428 0.845 0.601 0.550 0.907 0.706
Batch64-WarmupLR 0.333 0.968 0.568 0.423 0.935 0.629 0.572 0.945 0.735
Batch64-ComplexHead 0.303 0.844 0.506 0.434 0.896 0.623 0.378 0.971 0.606

6.2 MegaDescriptor Embedding Fine-Tuning

6.2.1 Training Process

The loss plot is Appendix Figure A.3, as it exhibits a typical pattern. While after each
training epoch, a special validation phase was carried out. During which a percentage
accuracy was calculated, facilitating the monitor of model performance. Additionally,
to detect potential overfitting, the accuracy was also calculated on a randomly selected
subset of the training data, as illustrated in the figure A.4.

6.2.2 Prediction Performance

Achieve an overall 0.6722 geometric mean on 0.17 threshold, with 0.5219 BAKS and
0.8657 BAUS. The performance on different species is illustrated below.
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Figure 6.4: Model Performance on Different Species

6.3 Model Comparison

The results in Table 6.2 summarize the performance of different models on the testSet,
as described in Section 3.4. Among all evaluated models, the model using metric learn-
ing (Metric) achieves the highest GEO MEAN score (0.723), indicating the best over-
all balance between identifying known individuals (BAKS) and detecting new identities
(BAUS). This superior performance is attributed to its ability to maintain a high BAKS
while also achieving a strong BAUS, demonstrating robust open-set recognition capabil-
ity. In contrast, while other models may excel in either BAKS or BAUS, they do not
achieve the same level of balanced performance as the Metric model.

Table 6.2: Overall performance comparison of different models

Model BAKS BAUS GEO MEAN

Batch16 0.518 0.905 0.684
Batch32 0.500 0.843 0.649
Batch64 0.497 0.862 0.654
Batch64-WarmupLR 0.500 0.932 0.683
Batch64-ComplexHead 0.431 0.914 0.628
Metric 0.579 0.903 0.723
EfficientNet B4 0.229 0.706 0.402

7 Discussion

This section includes some potential approaches we believe are promising for future
research, along with some preliminary attempts and ideas.

7.1 Data Pre-processing and Augmentation

As mentioned in Section 3.2, some individuals have numerous images. Mohammed et
al.[13] explored undersampling as a potential remedy. However, they also point out the
risk of removing some valuable data essential for model training, necessitating careful de-
sign of undersampling algorithm. Although undersampling has not shown effectiveness in
their experiment, it could be a worthwhile endeavor for our future work. We preliminarily
propose dynamically selecting images for majority classes during each training epoch.

Regarding image augmentation, our preliminary experiment indicated that online
augmentation worked better than offline augmentation, as the model could learn from
slightly varied images in each epoch. This continuous variation seemed to be especially
beneficial for mitigating overfitting. However, as augmentations are performed each time
a batch is fetched, this method introduces considerable computational overhead, doubling
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epoch duration from approximately 15 to 30 minutes. Given limited computing resources,
we adopted offline augmentation in this project. We may try to fine-tune the finalized
model with online augmentation, once optimal hyperparameters and training strategies
have been thoroughly established.

7.2 Model Fine-tuning

The images are also annotated with some other metadata such as the camera orien-
tation and date. Appropriate use of the additional information may enhance the model’s
identification ability. For instance, Adam et al.[2] proposed a time-aware splitting strat-
egy that utilizes the capture date. Regarding the orientation data, we initially propose
two potential strategies: directly input along with the images or embedding it at an
optimal stage. Further architectural improvements could involve multi-head designs for
better processing of heterogeneous inputs.

7.3 Prediction

Currently, the WildFusion pipeline with ALIKED and LightGlue involved is employed
for similarity score calibration. However, the two extractor and matcher are designed for
general-purpose; fine-tuning them may improve the calibration performance. However,
such process may require additional data annotation and strategy, which may be too hard
to implement. In addition, we try to develop some other models to extend the pipeline.

When it comes to the similarity score itself, current method simply returns the identity
of the most similar image from the database. However, each individual is represented
by multiple images, which presents an opportunity to aggregate information across these
images. Naive approaches, including averaging the similarity scores across all images of
the same individual and voting with the top 10 scores, may help produce more robust
similarity scores by leveraging more database images.

Finally, we explored the OpenMax[3] for the open-set challenge, a new layer that com-
putes the probability of an input belonging to an unknown class by calibrating softmax
outputs based on the Mean Activation Vector (MAV) of known classes. However, this
requires at least one correctly identified sample per individual for corresponding MAV
establishment, a condition not consistently met currently. As a remedy, we propose as-
signing extremely low logits to those with no true samples, excluding them from OpenMax
calibration and shifting their probability mass toward the unknown.

8 Conclusion

This project primarily leverages strategic fine-tuning techniques to enhance the ap-
plication of MegaDescriptor in wildlife recognition. Through effective fine-tuning of the
MegaDescriptor model and appropriate image processing, we achieved a remarkable 140%
improvement on geometric accuracy compared to the baseline performance on Kaggle[14],
highlighting the value and application potential of our work. It can, to a certain extent,
promote the protection of wild animals. In addition, thanks to our research and workflow
on open-set challenge, our approach may have a potential for application in some other
practical scenarios beyond wildlife recognition.
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Appendix

A Images

(a) Original pictures from a batch (b) Augmented pictures from a batch

Figure A.1: Image Augmentation Display

Figure A.2: Random Augmentation Display

(a) Triplet Loss History (b) Epoch Average Loss

Figure A.3: Loss Plot of Embedding Fine-tuning

(a) Accuracy on Subset of Training Set (b) Accuracy on Validating Set

Figure A.4: Accuracy of Validation Phase
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Figure A.5: Training loss with batch size 16, 32, 64

Figure A.6: Validation loss with batch size 16, 32, 64

Figure A.7: Learning rate warm-up for three species
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